quiz II

VEKTOR


Jarak dan Perpindahan

Jarak adalah angka yang menunjukkan seberapa jauh suatu benda berubah posisi melalui suatu lintasan tertentu. Dalam fisika atau dalam pengertian sehari-hari, jarak dapat berupa estimasi jarak fisik dari dua buah posisi berdasarkan kriteria tertentu (misalnya jarak tempuh antara Jakarta-Bandung). Dalam bidang matematika, jarak haruslah memenuhi kriteria tertentu.
Berbeda dengan koordinat posisi, jarak tidak mungkin bernilai negatif. Jarak merupakan besaran skalar, sedangkan perpindahan merupakan besaran vektor.
Jarak yang ditempuh oleh kendaraan (biasanya ditunjukkan dalam speedometer), orang, atau objek, haruslah dibedakan dengan jarak antara titik satu dengan lainnya. Dalam fisika, jarak adalah panjang lintasan yang ditempuh oleh suatu obyek yang bergerak, mulai dari posisi awal dan selesai pada posisi akhir. Konsep ini seringkali dipetukarkan dengan konsep perpindahan Jarak dapat dituliskan sebagai


yang dapat dibaca sebagai panjang lintasan yang menghubungkan titik \vec{r}_1 dan \vec{r}_2 menggunakan kecepatan \vec{v}(t).



Perpindahan adalah selisih dua buah vektor posisi, umumnya posisi akhir dan posisi awal. Konsep ini seringkali dipetukarkan dengan konsep jarak. Perpindahan dapat dituliskan sebagai

\vec{d}_{12} = \vec{r}_1 - \vec{r}_2

yang dapat dibaca sebagai posisi relativ \vec{r}_2 terhadap \vec{r}_1. Vektor posisi sendiri, baik \vec{r}_1 maupun \vec{r}_2, sebenarnya juga merupakan suatu perpindahan, karena merupakan posisi relatif terhadap pusat koordinat o (0,0,0)







MATRIKS





sumber : BSE MATEMATIKA SMA KLS XII IPA



Satuan panjang: 30 hektometer = 30.000desimeter
17. Satuan Luas: 11 hektometer2 = 1100.000.000centimeter2
18. Satuan massa: 1 kilogram = 1.000.000milligram
19. 3 hari = 4320menit
20. 21 inchi = 53,24centimeter
21. 23 miles = 37014,92meter
22. 200 km/jam = 5 5m/ detik
9
23. 12 km/jam2 = 1 m/ detik2
1080
24. 2 π rad/jam = 0,1 0/detik
25. 12 rad/menit = 11.459.155.855 0/detik
26. 10110011 (biner) = 179(decimal)
27. 10110011 (biner) =B3(hexadecimal)
28. 76 (decimal) = 1001100(biner)
29. 76 (hexadesimal) =1110110(biner)
30. 76 (hexadesimal) = 118 (decimal)

TUGAS ( QUIZ I di ITB )

1. sejarah kartesius



René Descartes lahir di La Haye, Perancis, 31 Maret 1596 – wafat di Stockholm, Swedia, 11 Februari 1650 pada umur 53 tahun), juga dikenal sebagai Renatus Cartesius dalam literatur berbahasa Latin, merupakan seorang filsuf dan matematikawan Perancis. Karyanya yang terpenting ialah Discours de la méthode (1637) dan Meditationes de prima Philosophia (1641).
Descartes, kadang dipanggil "Penemu Filsafat Modern" dan "Bapak Matematika Modern", adalah salah satu pemikir paling penting dan berpengaruh dalam sejarah barat modern. Dia menginspirasi generasi filsuf kontemporer dan setelahnya, membawa mereka untuk membentuk apa yang sekarang kita kenal sebagai rasionalisme kontinental, sebuah posisi filosofikal pada Eropa abad ke-17 dan 18.
Pemikirannya membuat sebuah revolusi falsafi di Eropa karena pendapatnya yang revolusioner bahwa semuanya tidak ada yang pasti, kecuali kenyataan bahwa seseorang bisa berpikir.
Dalam bahasa Latin kalimat ini adalah: cogito ergo sum sedangkan dalam bahasa Perancis adalah: Je pense donc je suis. Keduanya artinya adalah:
"Aku berpikir maka aku ada". (Inggris: I think, therefore I am)
Meski paling dikenal karena karya-karya filosofinya, dia juga telah terkenal sebagai pencipta sistem koordinat Kartesius, yang mempengaruhi perkembangan kalkulus modern.

Dalam matematika, Sistem koordinat Kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x dan koordinat y dari titik tersebut.

Untuk mendefinisikan koordinat diperlukan dua garis berarah yang tegak lurus satu sama lain (sumbu x dan sumbu y), dan panjang unit, yang dibuat tanda-tanda pada kedua sumbu tersebut (lihat Gambar 1).

Sistem koordinat Kartesius dapat pula digunakan pada dimensi-dimensi yang lebih tinggi, seperti 3 dimensi, dengan menggunakan tiga sumbu (sumbu x, y, dan z).
Dengan menggunakan sistem koordinat Kartesius, bentuk-bentuk geometri seperti kurva dapat diekspresikan dengan persamaan aljabar. Sebagai contoh, lingkaran yang berjari-jari 2 dapat diekspresikan dengan persamaan x² + y² = 4 (lihat Gambar 2).

Istilah Kartesius digunakan untuk mengenang ahli matematika sekaligus filsuf dari Perancis Descartes, yang perannya besar dalam menggabungkan aljabar dan geometri (Cartesius adalah latinisasi untuk Descartes). Hasil kerjanya sangat berpengaruh dalam perkembangan geometri analitik, kalkulus, dan kartografi.

Ide dasar sistem ini dikembangkan pada tahun 1637 dalam dua tulisan karya Descartes. Pada bagian kedua dari tulisannya Discourse on Method, ia memperkenalkan ide baru untuk menggambarkan posisi titik atau obyek pada sebuah permukaan, dengan menggunakan dua sumbu yang bertegak lurus antar satu dengan yang lain. Dalam tulisannya yang lain, La Géométrie, ia memperdalam konsep-konsep yang telah dikembangkannya.

Lihat koordinat (matematika) untuk sistem-sistem koordinat lain seperti sistem koordinat polar.
[sunting] Sistem koordinat dua dimensi

Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z. Sumbu-sumbu tersebut ortogonal antar satu dengan yang lain. (Satu sumbu dengan sumbu lain bertegak lurus.)

Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai x ditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik.

Pilihan huruf-huruf didasari oleh konvensi, yaitu huruf-huruf yang dekat akhir (seperti x dan y) digunakan untuk menandakan variabel dengan nilai yang tak diketahui, sedangkan huruf-huruf yang lebih dekat awal digunakan untuk menandakan nilai yang diketahui.

Sebagai contoh, pada Gambar 3, titik P berada pada koordinat (3,5).

Karena kedua sumbu bertegak lurus satu sama lain, bidang xy terbagi menjadi empat bagian yang disebut kuadran, yang pada Gambar 3 ditandai dengan angka I, II, III, dan IV. Menurut konvensi yang berlaku, keempat kuadran diurutkan mulai dari yang kanan atas (kuadran I), melingkar melawan arah jarum jam (lihat Gambar 3). Pada kuadran I, kedua koordinat (x dan y) bernilai positif. Pada kuadran II, koordinat x bernilai negatif dan koordinat y bernilai positif. Pada kuadran III, kedua koordinat bernilai negatif, dan pada kuadran IV, koordinat x bernilai positif dan y negatif (lihat tabel dibawah ini).
Kuadran nilai x nilai y
I > 0 > 0
II < 0 > 0
III < 0 < 0
IV > 0 < 0


2. TRIGONOMETRI

Sejarah awal

Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.

Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.

Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.

Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.

Trigonometri sekarang ini

Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.

Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.

Phytagoras lahir pada tahun 570 SM, di pulau Samos, di daerah Ionia. Pythagoras (582 SM – 496 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya.Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.

Dalam tradisi Yunani, diceritakan bahwa ia banyak melakukan perjalanan, diantaranya ke Mesir. Perjalanan Phytagoras ke Mesir merupakan salah satu bentuk usahanya untuk berguru, menimba ilmu, pada imam-imam di Mesir. Konon, karena kecerdasannya yang luar biasa, para imam yang dikunjunginya merasa tidak sanggup untuk menerima Phytagoras sebagai murid. Namun, pada akhirnya ia diterima sebagai murid oleh para imam di Thebe. Disini ia belajar berbagai macam misteri. Selain itu, Phytagoras juga berguru pada imam-imam Caldei untuk belajar Astronomi, pada para imam Phoenesia untuk belajar Logistik dan Geometri, pada para Magi untuk belajar ritus-ritus mistik, dan dalam perjumpaannya dengan Zarathustra, ia belajar teori perlawanan.

Selepas berkelana untuk mencari ilmu, Phytagoras kembali ke Samos dan meneruskan pencarian filsafatnya serta menjadi guru untuk anak Polycartes, penguasa tiran di Samos. Kira-kira pada tahun 530, karena tidak setuju dengan pemerintahan tyrannos Polycartes, ia berpindah ke kota Kroton di Italia Selatan. Di kota ini, Phytagoras mendirikan sebuah tarekat beragama yang kemudian dikenal dengan sebutan “Kaum Phytagorean.”

Kaum Phytagorean

Kaum phytagorean sangat berjasa dalam meneruskan pemikiran-pemikiran Phytagoras. Semboyan mereka yang terkenal adalah “authos epha, ipse dixit” (dia sendiri yang telah mengatakan demikian).2 Kaum ini diorganisir menurut aturan-aturan hidup bersama, dan setiap orang wajib menaatinya. Mereka menganggap filsafat dan ilmu pengetahuan sebagai jalan hidup, sarana supaya setiap orang menjadi tahir, sehingga luput dari perpindahan jiwa terus-menerus.
Diantara pengikut-pengikut Phytagoras di kemudian hari berkembang dua aliran. Yang pertama disebut akusmatikoi (akusma = apa yang telah didengar; peraturan): mereka mengindahkan penyucian dengan menaati semua peraturan secara seksama. Yang kedua disebut mathematikoi (mathesis = ilmu pengetahuan): mereka mengutamakan ilmu pengetahuan, khususnya ilmu pasti.

Pemikiran Phytagoras

Phytagoras percaya bahwa angka bukan unsur seperti udara dan air yang banyak dipercaya sebagai unsur semua benda. Angka bukan anasir alam. Pada dasarnya kaum Phytagorean menganggap bahwa pandangan Anaximandros tentang to Apeiron dekat juga dengan pandangan Phytagoras. To Apeiron melepaskan unsur-unsur berlawanan agar terjadi keseimbangan atau keadilan (dikhe). Pandangan Phytagoras mengungkapkan bahwa harmoni terjadi berkat angka. Bila segala hal adalah angka, maka hal ini tidak saja berarti bahwa segalanya bisa dihitung, dinilai dan diukur dengan angka dalam hubungan yang proporsional dan teratur, melainkan berkat angka-angka itu segala sesuatu menjadi harmonis, seimbang. Dengan kata lain tata tertib terjadi melalui angka-angka.

Salah satu peninggalan Phytagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia lah yang pertama membuktikan pengamatan ini secara matematis.[1]

Pythagoras dan murid-muridnya percaya bahwa segala sesuatu di dunia ini berhubungan dengan matematika, dan merasa bahwa segalanya dapat diprediksikan dan diukur dalam siklus beritme. Ia percaya keindahan matematika disebabkan segala fenomena alam dapat dinyatakan dalam bilangan-bilangan atau perbandingan bilangan. Ketika muridnya Hippasus menemukan bahwa \sqrt{2}, hipotenusa dari segitiga siku-siku sama kaki dengan sisi siku-siku masing-masing 1, adalah bilangan irasional, Pythagoras memutuskan untuk membunuhnya karena tidak dapat membantah bukti yang diajukan Hippasus

Geometri

Definisi

Salah satu cabang dari Matematika adalah Geometri. Geometri berasal dari bahasa Yunani yaitu geo yang artinya bumi dan metro yang artinya mengukur. Geometri adalah cabang Matematika yang pertama kali diperkenalkan oleh Thales (624-547 SM) yang berkenaan dengan relasi ruang. Dari pengalaman, atau intuisi, kita mencirikan ruang dengan kualitas fundamental tertentu, yang disebut aksioma dalam geometri. Aksioma demikian tidak berlaku terhadap pembuktian, tetapi dapat digunakan bersama dengan definisi matematika untuk titik, garis lurus, kurva, permukaan dan ruang untuk menggambarkan kesimpulan logis.(1)

Menurut Novelisa Sondang (2) bahwa “Geometri menjadi salah satu ilmu Matematika yang diterapkan dalam dunia arsitektur; juga merupakan salah satu cabang ilmu yang berkaitan dengan bentuk, komposisi, dan proporsi.” Muhamad Fakhri Aulia (3) menyebutkan bahwa geometri dalam pengertian dasar adalah sebuah cabang ilmu yang mempelajari pengukuran bumi dan proyeksinya dalam sebuah bidang dua dimensi.

Alders (1961) menyatakan bahwa ”Geometri adalah salah satu cabang Matematika yang mempelajari tentang titik, garis, bidang dan benda-benda ruang beserta sifat-sifatnya, ukuran-ukurannya, dan hubungannya antara yang satu dengan yang lain.”

Dari beberapa definisi Geometri di atas dapat disimpulkan bahwa Geometri adalah salah satu cabang Matematika yang mempelajari tentang bentuk, ruang, komposisi beserta sifat-sifatnya, ukuran-ukurannya dan hubungan antara yang satu dengan yang lain.

Geometri Sulit?

Di bangku sekolah dasar maupun menengah seperti, SD/MI, SMP/MTs, SMA/MA atau SMK/MAK, materi geometri tidak diajarkan secara khusus, namun materi itu ada dalam satu kesatuan mata pelajaran matematika. Nah, dalam kurikulum matematika yang membahas mengenai geometri adalah pada bagian yang membahas mengenai bentuk, bangun ruang, sudut dan sebagainya sebagaimana yang sudah disampaikan di atas. Jika kita sedang mempelajari Dimensi 3, yang meliputi balok, kubus, volume dan sebagainya, berarti kita juga sedang mempelajarai geometri. Pada pokok bahasan inilah (Dimensi 3, red) seorang guru biasanya mengalami kesulitan untuk menjelaskannya kepada siswa. Mengapa? Kerena materi ini membutuhkan kemampuan visualisasi siswa yang relative tinggi. Sebagai contoh ketika siswa menjumpai soal dimensi 3 dimana siswa diminta untuk mencari panjang garis yang menghubungkan titik tengah 2 diagonal ruang suatu balok. Jika tidak ada alat peraga atau media pembelajaran, tentu tidak semua siswa mampu memvisualisasikannya. Nah, saat itulah para siswa dituntut untuk membayangkan sebuah bangun agar bisa memecahkan soal. Tidak hanya masalah kemampuan memvisualisasikan, namun juga pemahaman siswa akan istilah rusuk dan rangkan juga ternyata bermasalah. Ini dialami oleh para siswa di tingkat pendidikan dasar. Sebagaimana disampaikan oleh Wahyu Setiawan (1996 :4-5) bahwa daya serap siswa kelas IV Sekolah Dasar terhadap konsep-konsep volume rendah. Selain itu Soedjadi (1995) juga mengungkapkan bahwa masih banyak siswa yang mengalami miskonsepsi, misalnya ”siswa menyebut rusuk pada bangun ruang merupakan rangka yang menopang tubuh”.

Mahasiswa di jenjang pendidikan tinggi pun ternyata juga mengalami kesulitan dalam memahami materi. Ini diindikasikan dengan rendahnya prestasi belajar geometri mahasiswa. Seperti yang terjadi di prodi pendidikan matematika suatu universitas. Prosentasi kelulusan mahasiswa universitas tersebut dalam mengikuti perkuliahan geometri hanya mencapai ± 55 % – 65 %, dan sebagian besar yang lulus mendapat C. Prosentasi ini relatif rendah dibandingkan mata kuliah yang lain. Ini menjadi salah satu indikator bahwa materi Geometri memang relatif sulit untuk dipelajari.

Alternatif Solusi

Sebagai guru Matematika, tentu kita berusaha keras agar sesulit apapun materi matematika, siswa mampu memahaminya dengan mudah. Berbagai alat peraga atau media pembelajaran serta metode pun diterapkan di kelas agar kompetensi dasar dapat tercapai secara tuntas.

Dewasa ini kita mengenal adanya alat peraga tiga dimensi yang bisa memvisualisasikan secara gamblang bagaimana wujud tiga dimensi beserta sudut-sudut yang ada di dalamnya. Misal bangun kubus atau balok yang kita buat dari kertas karton. Namun kelemahan dari alat peraga ini, kita tidak akan mampu melihat titik sudut yang ada di dalam balok atau kubus tersebut. Dan ketika ada soal yang menghendaki besarnya sudut yang diapit oleh dua garis diagonal ruang, maka tidak banyak siswa yang mampu memvisualisasikannya jika menggunakan alat peraga ini. Kecuali jika kubus atau balok itu dalam keadaan terbuka.

Di samping alat peraga yang terbuat dari kertas, ada juga alat peraga bangun ruang yang terbuat dari kaca, atau bahan seperti mika. Tentu ini akan sangat membantu siswa untuk bisa memvisualisasikan besarnya sudut yang diapit oleh dua diagonal ruang.

sumber :
1.wikipedia
2.math07.findtalk.net


Garis dan Titik

1.Carilah 5 titik yang dilalui garis 3x – 2y = 8. Gambarkan pada sistem koordinat Cartesian

t1 x = 6 , y = 5
t2 x = 4 , y = 2
t3 x = 2 , y = -1
t4 x = 0 , y = -4
t5 x = -2, y = -7

2.Buatlah fungsi garis y = f(x) yang melalui titik (1,0) dan (−3,3) dan
carilah nilai kemiringannya (slope)

Titik (1,0) dan (-3,3)
M = (y2 – y1) / (x2-x1)

M = ( 3 – 0 ) / ( -3 – 1 )

M = - 3 / 4


Gunakan titik (1,0)
y = mx + c
c = -3 / 4

3.Di titik mana kemungkinan terjadinya tabrakan antara mobil yang bergerak
pada jalur garis no. 2 dan pada jalur garis – x + 3y = −6
jawab

3x + 4y = 3, atau 3x = 3 - 4y, x = 9/4
-x + 3y = -6 atau -x = -6 - 3y, y = 3/8

jawab : ( 9/4 , 3/8)







TRIGONOMETRI
1.
a. Π radian = 1800
b. 2 Π radian = 2 x 100 = 1700
3 3

c. 00 radian = 0 radian
d. −60 Π = - 1 Π radian

3
2. Tabel fungsi trigonometri



AIR TERJUN BAYANG SANI

AIR TERJUN BAYANG SANI
BAYANG SANI, KEC.BAYANG

cubadak island

cubadak island
pulau cubadak, kawasan wisata mandeh, tarusan pesisir selatan

langkisau

langkisau
paralayang, salido city from langkisau hill